skip to main content


Search for: All records

Creators/Authors contains: "Makhlouf, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, we have seen the continuous and rapid increase of job openings in Science, Technology, Engineering and Math (STEM)-related fields. Unfortunately, these positions are not met with an equal number of workers ready to fill them. Efforts are being made to find durable solutions for this phenomena, and they start by encouraging young students to enroll in STEM college majors. However, enrolling in a STEM major requires specific skills in math and science that are learned in schools. Hopefully, institutions are adopting educational software that collects data from the students' usage. This gathered data will serve to conduct analysis and detect students' behaviors, predict their performances and their eventual college enrollment. As we will outline in this paper, we used data collected from the students' usage of an Intelligent Tutoring System to predict whether they would pursue a career in STEM-related fields. We conducted different types of analysis called "problem-based approach" and "skill-based approach". The problem- based approach focused on evaluating students' actions based on the problems they solved. Likewise, in the skill-based approach we evaluated their usage based on the skills they had practiced. Furthermore, we investigated whether comparing students' features with those of their peer schoolmates can improve the prediction models in both the skill-based and the problem-based approaches. The experimental re- sults showed that the skill-based approach with school aggregation achieved the best results with regard to a combination of two metrics which are the Area Under the Receiver Operating Characteristic Curve (AUC) and the Root Mean Squared Error (RMSE). 
    more » « less